Optical properties of silicon clusters in the presence of water: a first principles theoretical analysis.
نویسندگان
چکیده
We investigate the impact of water on the optical absorption of prototypical silicon clusters. Our clusters contain 5 silicon atoms, tetrahedrally coordinated and passivated with either hydrogen or oxygen. We approach this complex problem by assessing the contributions of three factors: chemical reactivity, thermal equilibration, and dielectric screening. We find that the silanone (Si=O) functional group is not chemically stable in the presence of water and exclude this as a source of significant red shift in absorption in aqueous environments. We perform first principles molecular dynamics simulations of the solvation of a chemically stable, oxygenated silicon cluster with explicit water molecules at 300 K. We find a systematic 0.7 eV red shift in the absorption gap of this cluster, which we attribute to thermally induced fluctuations in the molecular structure. Surprisingly, we find no observable screening impact of the solvent, in contrast with consistent blue shifts observed for similarly sized organic molecules in polar solvents. The predicted red shift is expected to be significantly smaller for larger Si quantum dots produced experimentally, guaranteeing that their vacuum optical properties are preserved even in aqueous environments.
منابع مشابه
First-principles calculations of optical properties: Application to silicon clusters
We have developed an ab initio method to calculate optical properties of crystals, clusters, and surfaces starting from their fully relaxed atomic configurations. The approach allows dealing with systems consisting of up to several hundred atoms per unit cell. We present results for silicon clusters consisting of 20, 60, and 70 atoms. We calculate the optical dielectric response function for cl...
متن کاملFirst-Principles Study of Structure, Electronic and Optical Properties of HgSe in Zinc Blende (B3) Phase
In this paper, the structural parameters, energy bands structure, density ofstates and charge density of HgSe in the Zincblende(B3) phase have been investigated.The calculations have been performed using the Pseudopotential method in theframework of density functional theory (DFT) by Quantum Espresso package. Theresults for the electronic density of states (DOS) show tha...
متن کاملBoron nitride substituted 12-crown-4 ether: Theoretical study of structural, thermochemical, and nonlinear optical properties
The structures and stability of 531 novel boron nitride substituted isomers of 12-crown-4 etherverified theoretically. For a collection of 23 selected BN isomers, structural geometry, vibrationalstability, energy gaps, natural bond population analysis, and nonlinear optical responses investigatedtheoretically. The changes of standard enthalpies for ionization reactions and electron affinityreac...
متن کاملTheoretical Investigation of Doping Concentration in Silicon Semiconductor Using Optical Principle
This paper investigates the amount of doping concentration in silicon semiconductor using optical principle. Both donor and acceptor impurities of n type and p-type silicon semiconductor materials are computed at wavelength of 1550 nm. During the computation of donor and acceptor impurities, both reflection and absorption losses are considered. Theoretical result showed that transmitted intens...
متن کاملTheoretical Study of 1,4-Dioxane in Aqueous Solution and Its Experimental Interaction with Nano-CuSO4
The electronic structure, Non-Linear Optical (NLO) properties and Natural Bonding Orbital (NBO) analysis of 1,4-dioxane were investigated using the theoretical study of Density Functional Theory (DFT) calculations at the B3LYP/6-311G (d,p) level of theory. The optimized structure is nonlinear as indicated from the dihedral angles. Natural bonding orbital analysis has been analyzed in terms...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of the American Chemical Society
دوره 126 42 شماره
صفحات -
تاریخ انتشار 2004